114 research outputs found

    学会抄録

    Get PDF
    The aim of this study was to understand the acclimatization mechanisms of photosynthetic apparatus in Brachypodium pinnatum (L.) P. Beauv grass during its expansion. Twelve populations differentiated by age: young (30-50 years old), intermediate age (ca. 100 y) and old (>300 y) were studied. It was confirmed that the decrease of the number of genotypes as a result of environmental stress and competition were reflected in changes in chlorophyll fluorescence (ChlF) parameters. The old stands were dominated by a few genotypes which seem to be the best acclimatized to the self-shading/competition by lowering their photosynthetic performance during light-phase of photosynthesis. On the other hand, the 'high-speed' photosynthetic rate observed in the young populations can be seen as acclimatization to very adverse conditions. Our results clearly confirm that ChlF is a powerful method of inferring physiological mechanisms of the expansion of tor grass. The Principal Component and Redundancy Analyses, followed with k-means classification, allowed to find the differentiation of groups of distinct ChlF parameters and enabled us to relate them to changes in genotypic diversity of populations. We conclude that the plastic morphological and physiological response to changeable habitat light conditions with its optimum in half-shade refers to its forest-steppe origin

    Genome-Wide Associations of Chlorophyll Fluorescence OJIP Transient Parameters Connected With Soil Drought Response in Barley

    Get PDF
    One hundred and nine accessions of spring barley seedlings were phenotyped under soil drought conditions. Chlorophyll fluorescence induction (OJIP) parameters, leaf water content, relative turgidity, net assimilation rate (PN), and water use efficiency (WUE) of plants were measured. All the tested lines were genotyped by means of DArT sequencing (DArTseq) technology. For association mapping a 11,780 polymorphic DArTseq and 4,725 DArTseq SNP markers were used. Our results revealed dissimilar patterns of the relationships between OJIP-parameters under control and drought conditions. A high level of correlation between parameters characterizing Photosystem's II (PSII) energy trapping efficiency (Fv/Fm) and photochemical events downstream of PSII reaction center (e.g., Performance Index—PICSo) was observed only in the case of drought-treated plants. Generally, OJIP parameters were correlated with leaf water content (less in control). This correlation was weaker with WUE, and absent with PN. Under drought stress, 6,252 genotype × phenotype associations, which passed false discovery rate (FDR) verification, were found between all the studied phenotypic characteristics (23, including 19 OJIP parameters) and 2,721 markers. On the other hand, only 282 associations passed FDR test in the control. They comprised 22 phenotypic parameters and 205 markers. Probing for gene annotations of sequences was performed for markers associated with Fv/Fm for both drought and control, markers were associated with studied traits in both control and drought, as well as for markers associated with both OJIP and other physiological parameters in drought. Our work allowed us to conclude that drought treatment differentiates the studied lines through the revealing of relationships between water content and the damages to PSII reaction centers or different components of PSII energy transfer chain. Moreover, the former was not connected with net photosynthesis rate

    Photosynthetic Efficiency as Bioindicator of Environmental Pressure in A. halleri

    Get PDF
    In earlier ecophysiological studies that were conducted on Arabidopsis halleri plants, scientists focused on the mechanisms of Cd and Zn hyperaccumulation but did not take into consideration the environmental factors that can significantly affect the physiological responses of plants in situ. In this study, we investigated A. halleri that was growing on two nonmetalliferous and three metalliferous sites, which were characterized by different environmental conditions. We compared these populations in order to find differences within the metallicolous and nonmetallicolous groups that have not yet been investigated. The concentrations of several elements in the plant and soil samples also were investigated. To our knowledge, the concentration and fluorescence of chlorophyll were measured for A. halleri in situ for the first time. Our study confirmed the hyperaccumulation of Cd and Zn for each metallicolous population. For the metallicolous populations, the inhibition of parameters that describe the efficiency of the photosynthetic apparatus with increasing accumulations of heavy metals in the shoots also was observed. It was found that the nonmetallicolous plant populations from the summit of Ciemniak Mountain had larger antenna dimensions and chlorophyll content but a lower percentage of active reaction centers. To our knowledge, in this study, the internal high physiological diversity within the populations that inhabit metalliferous and nonmetalliferous sites is presented for the first time

    Efficiency of the photosynthetic apparatus in Cannabis sativa L. fertilized with sludge froma wastewater treatment plant and with phosphogypsum

    Get PDF
    Sewage sludge and phosphogypsum are by-products of wastewater treatment and phosphorus fertiliser production, respectively. Considering all known methods of their management, it seems rational to use these waste products in agriculture. While assimilating nutrients contained in sewage sludge or phosphogypsum, agricultural crops contribute to the recycling of these otherwise noxious materials. The objective of this study was to identify the effect of fertilization with sewage sludge and with phosphogypsum on selected physiological parameters that determine the efficiency of the photosynthetic apparatus in Cannabis sativa L. Field tests were conducted on three varieties of Cannabis sativa: Białobrzeskie, Tygra and Beniko. Plots were fertilized with sewage sludge as an equivalent of nitrogen nutrition in a dose of 170 kg N.ha-1 and with phosphogypsum applied in three doses: 100, 500 and 1000 kg.ha-1. The plants were subjected to physiological assays (relative content of chlorophyll and leaf area index) on three dates in 2014: 29 June (early development stage), 26 July (full development) and 20 September (final development stage). The study discusses the effect of fertilization with sewage sludge and phosphogypsum on the efficiency of the photosynthetic apparatus in Cannabis sativa

    Hormesis in Plants: The Role of Oxidative Stress, Auxins and Photosynthesis in Corn Treated with Cd or Pb

    Get PDF
    Hormesis, which describes the stimulatory effect of low doses of toxic substances on growth, is a well-known phenomenon in the plant and animal kingdoms. However, the mechanisms that are involved in this phenomenon are still poorly understood. We performed preliminary studies on corn coleoptile sections, which showed a positive correlation between the stimulation of growth by Cd or Pb and an increase in the auxin and H2O2 content in the coleoptile sections. Subsequently, we grew corn seedlings in hydroponic culture and tested a wide range of Cd or Pb concentrations in order to determine hormetic growth stimulation. In these seedlings the gas exchange and the chlorophyll a fluorescence, as well as the content of chlorophyll, flavonol, auxin and hydrogen peroxide, were measured. We found that during the hormetic stimulation of growth, the response of the photosynthetic apparatus to Cd and Pb differed significantly. While the application of Cd mostly caused a decrease in various photosynthetic parameters, the application of Pb stimulated some of them. Nevertheless, we discovered that the common features of the hormetic stimulation of shoot growth by heavy metals are an increase in the auxin and flavonol content and the maintenance of hydrogen peroxide at the same level as the control plants

    Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants

    Get PDF
    In natural conditions, plants growth and development depends on environmental conditions, including the availability of micro- and macroelements in the soil. Nutrient status should thus be examined not by establishing the effects of single nutrient deficiencies on the physiological state of the plant but by combinations of them. Differences in the nutrient content significantly affect the photochemical process of photosynthesis therefore playing a crucial role in plants growth and development. In this work, an attempt was made to find a connection between element content in (i) different soils, (ii) plant leaves, grown on these soils and (iii) changes in selected chlorophyll a fluorescence parameters, in order to find a method for early detection of plant stress resulting from the combination of nutrient status in natural conditions. To achieve this goal, a mathematical procedure was used which combines principal component analysis (a tool for the reduction of data complexity), hierarchical k-means (a classification method) and a machine-learning method—super-organising maps. Differences in the mineral content of soil and plant leaves resulted in functional changes in the photosynthetic machinery that can be measured by chlorophyll a fluorescent signals. Five groups of patterns in the chlorophyll fluorescent parameters were established: the ‘no deficiency’, Fe-specific deficiency, slight, moderate and strong deficiency. Unfavourable development in groups with nutrient deficiency of any kind was reflected by a strong increase in F o and ΔV/Δt 0 and decline in φ Po , φ Eo δ Ro and φ Ro . The strong deficiency group showed the suboptimal development of the photosynthetic machinery, which affects both PSII and PSI. The nutrient-deficient groups also differed in antenna complex organisation. Thus, our work suggests that the chlorophyll fluorescent method combined with machine-learning methods can be highly informative and in some cases, it can replace much more expensive and time-consuming procedures such as chemometric analyse

    Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis

    Get PDF
    Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica

    Environmental stress - what can we learn from chlorophyll a fluorescence analysis in woody plants? A review

    Get PDF
    Chlorophyll a fluorescence (ChF) signal analysis has become a widely used and rapid, non-invasive technique to study the photosynthetic process under stress conditions. It monitors plant responses to various environmental factors affecting plants under experimental and field conditions. Thus, it enables extensive research in ecology and benefits forestry, agriculture, horticulture, and arboriculture. Woody plants, especially trees, as organisms with a considerable life span, have a different life strategy than herbaceous plants and show more complex responses to stress. The range of changes in photosynthetic efficiency of trees depends on their age, ontogeny, species-specific characteristics, and acclimation ability. This review compiles the results of the most commonly used ChF techniques at the foliar scale. We describe the results of experimental studies to identify stress factors that affect photosynthetic efficiency and analyse the experience of assessing tree vigour in natural and human-modified environments. We discuss both the circumstances under which ChF can be successfully used to assess woody plant health and the ChF parameters that can be useful in field research. Finally, we summarise the advantages and limitations of the ChF method in research on trees, shrubs, and woody vines

    Rice Straw Vermicompost Enriched With Cellulolytic Microbes Ameliorate the Negative Effect of Drought in Wheat Through Modulating the Morpho-Physiological Attributes

    Get PDF
    Wheat growth and productivity are unfavorably pretentious by a lack of sufficient water (drought or water deficit) worldwide. Drought stress significantly affects all the morpho-physiological and biochemical characteristics and the agronomical yield of wheat. Different management approaches have been adopted to cope with the negative effects of water deficit. Soil-applied vermicompost is helpful in improving the growth and developmental processes of wheat under water deficit conditions. Therefore, a trial was carried out to optimize the best amount of vermicompost and to assess its role in ameliorating the negative effects of drought for sustainable crop production. The treatments consisted of 1) two contrasting wheat cultivars Faisalabad-08 (drought-tolerant) and Galaxy-13 (drought-sensitive), 2) drought with three levels [D0 = 70% of field capacity (no drought), D1 = 45% of field capacity (mild drought), and D2 = 30% of field capacity (severe drought)] and 3) cellulolytic microbe-enriched vermicompost prepared from rice straw with four levels (VT0 = Control, VT1 = 4 t ha−1, VT2 = 6 t ha−1 , and VT3 = 8 t ha−1). Data on various morphological, physiological, and biochemical parameters were recorded from sowing to crop harvesting. In this study, it was demonstrated that all these parameters were negatively affected by moisture deficit conditions. The application of vermi-fertilizer significantly increased (p < 0.05) the aforementioned parameters of wheat in both the absence and presence of drought. Under severe drought, VT2 treatment increased the seedling length by 14.02–26.14%, fresh weight by 15.16–22.91%, and dry weight by 0.37–28.20% in both cultivars compared with control. In addition, VT2 treatment reduced the leaf water potential by 6.36 and 3.36%, leaf osmotic potential by 1.74 and 1.68%, and increased the turgor potential by 4.83 and 3.36%, and photosynthetic rate by 18.59 and 26.42% in Faislabad-08 and Galaxy-13, respectively, over control. We concluded that the application of vermicompost is a valuable approach to alleviate the adverse impacts of water stress on wheat
    corecore